shapingLFO

LFO with multiple shaping tools
Author: Remco van der Most
License: BSD
Github: sss/lfo/shapingLFO.axo

Inlets

frac32 frequency

frac32 phase offset input (parallel to beziercurve!)

frac32 resets when reset input goes above 0.

int32 0=sine,1=triangle,2=saw,3=ramp,4=pulse

int32 0=normal, 1=exp,2=inv exp,3=S-peak,4=S-sqr

bool32 Sets output waveform from unipolar to bipolar

frac32.bipolar Bezier phase distortion A

frac32.bipolar Bezier phase distortion B

frac32.bipolar sinedPhase

Outlets

frac32 wave

frac32 sined

Declaration
uint32_t Phase;
uint32_t r;
uint32_t h;
int32_t x1;
int32_t y1;

int32_t crv1;
int32_t crv2;
int32_t wavs;
int32_t wavr;
Init
Phase = 0;
r = 1;
Control Rate
if ((inlet_reset > 0) && r) {
  Phase = 0;
  r = 0;
} else {
  if (!(inlet_reset > 0))
    r = 1;
  Phase += ((inlet_Hz) / 44 * 30);
}

int32_t Bezier;
x1 = Phase >> 5;
y1 = ((1 << 27) - (x1));
int p0 = (int64_t)inlet_Bezier1;
int p1 = (int64_t)inlet_Bezier2;
int p2 = (int64_t)-inlet_Bezier1;
int p3 = (int64_t)inlet_Bezier1 - inlet_Bezier2;
int p4 = (int64_t)inlet_Bezier1;

int x2 = ___SMMUL(x1 << 3, x1 << 2);
int x3 = ___SMMUL(x2 << 3, x1 << 2);
int x4 = ___SMMUL(x3 << 3, x1 << 2);
int y2 = ___SMMUL(y1 << 3, y1 << 2);
int y3 = ___SMMUL(y2 << 3, y1 << 2);
int y4 = ___SMMUL(y3 << 3, y1 << 2);

int a = ___SMMUL(y4 << 3, p0 << 2);
int b = ___SMMUL(x1 << 3, ___SMMUL(y3 << 3, p1 << 2) << 2) * 4;
int c = ___SMMUL(x2 << 3, ___SMMUL(y2 << 3, p2 << 2) << 2) * 6;
int d = ___SMMUL(x3 << 3, ___SMMUL(y1 << 3, p3 << 2) << 2) * 4;
int e = ___SMMUL(x4 << 3, p4 << 2);
Bezier = ((((-(a + b + c + d + e)) << 4) + Phase - (inlet_Phase << 4)) >> 4);

int32_t r;
int32_t wave;
switch (inlet_waveform > 0 ? inlet_waveform : 0) {
case 0:
  SINE2TINTERP(Bezier << 4, r) wave = (r >> 5) + (1 << 26);
  break;
case 1:
  wave = (((Bezier) - (1 << 27)) > (0) ? ((Bezier) - (1 << 27))
                                       : -((Bezier) - (1 << 27)));
  break;
case 2:
  wave = (Bezier >> 1);
  break;
case 3:
  wave = (1 << 27) - (Bezier >> 1);
  break;
case 4:
  wave = (((Bezier >> 1) - (1 << 26)) > (0)) ? (1 << 27) : 0;
  break;
}

switch (inlet_curve > 0 ? inlet_curve : 0) {
case 0:
  wavs = wave;
  ;
  break;

case 1:
  wavs = ___SMMUL(wave << 3, wave << 2);
  break;

case 2:
  crv1 = (1 << 27) - wave;
  crv2 = ___SMMUL(crv1 << 3, crv1 << 2);
  wavs = (1 << 27) - crv2;
  break;

case 3:
  crv1 = ((wave << 1) - (1 << 27));
  crv2 = ___SMMUL(crv1 << 3, crv1 << 2);
  wavs = ((___SMMUL(crv1 << 3, crv2 << 2)) >> 1) + (1 << 26);
  ;
  break;

case 4:
  if ((wave) >= (1 << 26)) {
    wavr = (1 << 26) - (((wave) - (1 << 26)) * 9 / 10);
  } else {
    wavr = (-1 << 26) - (((wave) - (1 << 26)) * 9 / 10);
  }
  crv2 = ___SMMUL((wavr) << 4, wavr << 3);
  crv1 = ___SMMUL((wavr) << 4, crv2 << 2);
  if ((crv1) >= 0) {
    wavs = (((1 << 26) - (crv1 >> 1))) + (1 << 26);
  } else {
    wavs = (((-1 << 26) - (crv1 >> 1))) + (1 << 26);
  }
  break;

default:
  wavs = wave;
  ;
  break;
}

switch (inlet_Bipolar > 0 ? inlet_Bipolar : 0) {
case 0:
  outlet_wave = wavs;
  break;
default:
  outlet_wave = (wavs << 1) - (1 << 27);
  break;
}
int32_t sine;
int32_t sina;
SINE2TINTERP((wavs + inlet_sinedPhase) << 5, sine)
sina = ((sine) >> 5) + (1 << 26);
switch (inlet_Bipolar > 0 ? inlet_Bipolar : 0) {
case 0:
  outlet_sined = sina;
  break;
default:
  outlet_sined = (sina << 1) - (1 << 27);
  break;
}

Privacy

© 2025 Zrna Research